

Abstract—Embedded system application is a hot topic in

today’s date & Linux gradually becomes the most important
operating system for embedded applications. Embedded real-
time system must be able to response and deal with system
events within the pre-defined time limitation. In real-time
multi-tasking system, a lot of events and multiple concurrent
tasks are running at the same time. Therefore, to meet the
system response time requirement, we must ensure that each
mission can be achieved within the required time frame.

Current Operating Systems includes a graphical user
interface that is widely used. Due to the absence of Real-Time
ability, current Operating Systems has not been suitable for all
industrial applications. On the other hand normal operating
system has the advantage of having both widespread
applications and broad user acceptance. Moreover lot many
low priced user programs are available. This is an attempt to
create a way to make operating system useful for industrial
real-time applications eliminating its disadvantages without
giving up its advantages of popular user applications.

Index Terms— Real time operating system, hybrid kernel,
performance parameters.

I. INTRODUCTION
The Hybrid Kernel combines the Desktop OS and RTOS

so that they can run concurrently on the same PC and the
user can get best of both worlds. To make this possible we
have developed a software only, real-time extension
technology for desktop OS. The new technology guarantees
deterministic response on interrupts that are targeted at
Desktop OS. Any PCI or ISA PC plug-in board controlled
by RTOS can generate these interrupts and interrupts aimed
at RTOS always receive a higher priority than those aimed
at Desktop OS [1].

As long as at least one RTOS task is active, the
processors execution time is available exclusively for RTOS.
Desktop OS will be reactivated only if all the RTOS tasks
have given up their execution time and RTOS has entered
into the idle mode. The RTOS idle mode controls the
reactivation of General purpose OS. This makes it possible
for the programmer to control processor sharing between
two operating systems according to the application
requirements.

Contra posing the basic principles and mechanism of the
real-time operating system, the paper has compared general
operating systems with real-time operating system, and
made a good effort to analyze the key factors which may

Manuscript received March 5, 2011, revised March 30, 2012.
Prakash S Prasad is with Information Technology,Priyadarshini College

of Engineering, Nagpur, India (e-mail: prakashsprasad@gmail.com).
Akhilesh R. Upadhyay is with Dept. E.C.,Sagar Institute of Research and

Technology, , Bhopal, India.

affect the real-time characteristics of operating system, and
then given an assessment method to evaluate the real-time
character of operating system.

Real-time systems are specific application systems in
general, because specific characteristics could ensure their
real-time characters on a certain extent. Early real-time
systems have no operating system supported. To implement
multi-task management, engineers must program code for
specific practical application. Therefore, these particular
software developments are less inheritance for code reuse,
maintenance and upgrades which brought a lot of trouble.
The emergence of real-time embedded operating system
provides a powerful tool for real-time systems design and
development because of its real-time kernel, multi-task,
scheduling and fast interrupt response mechanism and so on.
Such real-time characteristics can significantly reduce the
workload of developers, improve development efficiency,
and bring a lot of convenience for the maintenance and
upgrading systems.

However, a system that uses real-time operating is not
necessarily a real-time system. Real-time operating system
is just only provide a basis for the real-time system, and the
most essential elements for a real-time system are to meet
the system requirements of task-critical time, which means
the system must response to events in time and complete
tasks within the limited time[2].

II. REAL TIME OPERATING SYSTEM: ITS COMPONENTS
AND CHARACTERISTICS

Real-time operating system is a subtype of operating
system. It has a lot of characteristics which are similar to
common operating system in many respects. It is mainly
responsible for the control and management of variety of
hardware resources to enable the hardware system to
become available, and provides upper level applications
with rich system calls. It schedules execution in a timely
manner, manages system resources and provides a
consistent foundation for developing application code [3].

A. Components of RTOS
Most of the RTOS kernels consist of following

components:
• Scheduler - The scheduler is at the heart of

every kernel. A scheduler provides the
algorithms needed to determine which task
executes when.

• Objects- The most common RTOS kernel
objects are tasks, semaphores and message
queues.

• Services- Most kernels provide services that
help developers create applications for real
time embedded systems. These services

Design of Hybrid Kernel and the Performance
Improvement of the Operating System

Prakash S. Prasad and Akhilesh R. Upadhyay

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 2, April 2012

162

comprise sets of API calls that can be used to
perform operations on kernel objects or can be
used in general to facilitate following services:

• Timer Management
• Interrupt Handling
• Device I/O
• Memory Management

Embedded systems are used for various applications.
These applications can be proactive or reactive dependent
on the requirements like interface, scalability, connectivity
etc. Choosing the OS for an embedded system is based on
the analysis of OS itself and the requirements of application.

B. Characteristics
1. Its real time characteristic-Response to events

in time and complete tasks within the limited
time

2. The scheduling objective is letting high
priority task go first

3. The tasks running on real-time operating
system should be certain

4. Some data are highly sharing in real-time
operating system

III. FACTORS AFFECTING REAL-TIME
CHARACTERISTICS OF OPERATING SYSTEM

There are varieties of factors impacting a system’s real-
time. Among these factors, operating system and its own
factors play crucial roles, including process management,
task scheduling, context switching time, memory
management mechanism, the time of interrupt handle, and
so on.

A. Scheduling of Tasks
It is crucial for the real-time operating system to adopt

preemptive scheduling kernel, which is based on task
priority. The uC/OS-II operating system uses this method to
implement its scheduling. In an operating system with
nonpreemptive scheduling mechanism, must have no strict
real-time characteristic.

Preemptive scheduling provides a good foundation for
real-time system. In order to maximize the efficiency of
scheduling systems, the operating system should run with
certain real-time scheduling algorithm.

There are some common real-time scheduling algorithms,
such as the Liu and Layland Rate-Monotonic (RM)
scheduling algorithm and the earliest deadline priority (EDF)
algorithm. The RM scheduling algorithm is a type of static
scheduling algorithm, in which the priority of tasks are
determined by the length of the cycle of task, and the shorter
cycle of task has a higher priority. The EDF algorithm is
one of the most popular dynamic priority scheduling
algorithms that define priority of tasks according to their
deadlines. Clearly, an excellent task scheduling algorithm
can improve the operating system’s real-time characteristic.
However, it also consumes a certain degree of system
resource. Thus, time complexity of scheduling algorithm, in
turn, has an impact on the real-time characteristic.

B. The Context Switching Time
In a multi-tasking system, context switch refers to a series

operation that the right of using CPU transferring from one
task which is running to another ready for running one [4].
In preemptive scheduling systems, there are a lot of events
that can cause context switches, such as external interrupt,
or releasing of resource which high priority tasks wait for.
The linkages of tasks in an operating system are achieved by
the process control block (PCB) data structure. When
context switches occurred, the former tasks information was
saved to the corresponding PCB or stack PCB specified.
The new task fetches original information from
corresponding PCB. The time switching consumed depends
on the processor architecture, because different processors
need to preserve and restore different number of registers;
some processors have a single special instruction which is
able to achieve all the registers’ preserve and restore job;
some processors provide a number of registers group, the
context switching required only need to change the register
group pointer [5]. Operating system data structures will also
affect the efficiency of context switch.

C. The Time of Kernel Prohibiting Interrupt
To ensure the atomic of operating to some critical

resource, the operating system kernel has to prohibit all of
interrupt sometimes. Interrupt will break the sequence of
instructions, and may cause damage of data. Prohibiting
interrupt always delay the response of request and context
switching. In order to improve real-time performance of
operating system, noncritical operations can be inserted
between the critical areas. Setting reasonable preemptive
points in critical areas can reduce the prohibition time of
interrupt.

D. Efficiency and Treatment Methods of Interrupt
As the driving force for operating system scheduling,

interrupt provides approaches of interaction between
external events and operating system. The interrupt response
speed is one of the most important ingredients which impact
the real-time performance of system. At the end of each
instruction execution, CPU will detect the status of interrupt.
If there is an interrupt request and the interrupt is not
prohibited, the system will execute a series of interrupt
treatments: pushing values of CPU registers to stacks,
obtaining the interrupt vector and getting the procedures
counter register value, then jumping to the entrance of ISR
and beginning to run, etc. [6]. What have mentioned above
requires some system consumption. For a specific system,
the consumption is identifiable, that is to say: it is possible
to calculate the time delay of interrupt treatment caused by
this part of work.

As interrupt management strategy, allowing interrupt
nesting can further improve the response of high-priority
incident’s real-time, but relatively low-priority interrupt
handling will be suffer negative impact. It should be
considered under certain situation.

Non-emergency interruption may cause delay to
important and urgent tasks, because interrupt handling is
executed before task and thread. In order to reduce the delay,
the handle process should be divided into two parts, just like
Linux divided it into the top half and bottom half. Also

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 2, April 2012

163

Windows CE’s interrupt handling is divided into two parts:
ISR and IST. They tried to keep ISR as a short program,
while allowing tasks do more work, and make full use of the
task scheduling mechanism.

E. Memory Management Mechanism
Generally, a real-time operating system uses the most

efficient unified physical address space. Every task runs in
the same address space. This management method can avoid
the address space switching caused by the process
scheduling that will occupy a lot of system resources.
Because converting virtual address to physical address will
lower the system performance, real-time operating systems
use physical address directly, although it may bring security
and stability problems. One of the most popular embedded
operating systems-Vxworks uses the mechanism.

Real-time operating systems never use virtual memory,
because it is hard to estimate the time of fetching data from
external storage medium. When a page miss occurs,
memory management should swap pages between internal
memory and external memory. This process will suspend
current running task. So the execution of real-time task
cannot be assured.

F. The Race Condition among Tasks
The tasks of the system may compete for sharing

resources. It will definitely cause some tasks to suspend and
wait for the sharing resource. In preemptive scheduling
kernel, priority inversion is a serious problem caused by
race condition. A low-priority task which occupies critical
resources has no right to implement, while a high-priority
task has to wait a middle-priority task to release CPU to
low-priority task. So the high-priority task is affected
seriously and the task scheduling will become unstable and
unpredictable. The real-time performance of system
deteriorates rapidly. After all, the high-priority task can only
seize the CPU from the low-priority task. It can’t seize the
resources. At this condition, it is necessary to use priority
inheritance and priority ceiling to resolve the problem.

IV. ANALYSIS OF LINUX KERNEL’S REAL TIME
PERFORMANCE AND HOW IT IS RESTRICTED

It’s well known that an operating system’s real-time
performance is evaluated by the following five technologic
parameters: Deterministic, Preemptive, Context Switching,
Interrupt Latency and Scheduling Latency [7, 8]. Context
Switching is relative with specific CPU and Deterministic is
determined by the remaining three aspects. So in this paper
Linux kernel’s real-time performance is discussed from
Preemptive, Interrupt Latency and Scheduling Latency.

A. Preemptive
In general there are two modes in Linux kernel which are

user state and core state. When a process operates at user
state, preemptive scheduling is possible to happen if there is
no shared data. But at core state the kernel is non-
preemptive [4] and the tasks ready to run must be done in
sequence. When a critical section of code is executed or
Preempt disable command is used, the task cannot be
preempted. In a word Linux kernel’s preemptive

performance still doesn’t meet the need of hard real-time
performance.

B. Scheduling Policy
Scheduling latency is the time that it takes for a high

priority task ready to run caused by an event to wait to be
done and is determined by interrupt latency, non-preemptive
time and scheduling algorithm. In general Linux kernel
scheduling algorithm is an O (n) algorithm indicating
scheduling time is relative with the task scale, which is
caused by concentrated computing time slices. Scheduling
time is certain independent of task scale because Active
queue and Expired queue are set so that it is unnecessary to
compute time slices concentrated and scan the whole queue
before scheduling switch. Thus easily resulting in that non-
real-time task blocks real-time one by disabling interrupt.

C. Interrupt Latency
An interrupt has the highest priority and can preempt any

task. It is common to disable interrupt for safety in Linux
kernel process. If lower priority tasks disable interrupt there
will be uncertain latency time for real-time task’s response,
which is not allowed for real-time system.

Improvement on Linux Kernel Real-Time performance
It takes long time for Linux kernel to develop and its

performance to increase. However for the standard Linux
kernel its real-time performance is always a problem unable
to be solved completely. It is not because the designers are
not excellent for many top programmers and engineers in
the world take part in developing Linux kernel, but the
standard Linux kernel needs to take into account fairness,
balance and scale compatibility, and many other factors so
that real-time performance has to give in. The real-time
performance of Linux kernel is improved by improving both
scheduling strategy and interrupt latency which block real-
time task.

The hybrid Kernel gives the flexibility to select the
system according to the application. The choices are as
follows:
1) Desktop Operating System
2) Embedded Operating System
3) Embedded Operating System with Soft Real time
requirements
4) Embedded Operating System with hard real time
requirements

The Input given by the Application Program interface
will be submitted to the kernel. Microkernel layer takes
control, which are special for Interrupt Handler mechanisms
and Specific schedulers. Micro Kernel deals with real time
tasks and gives them main priority. Monolithic Kernel Deals
with non real time applications and tasks. However the
intermediate layer of Micro kernel deals with the
applications, but the non real applications will be scheduled
by the monolithic kernel. Thus the advantages of both the
kernels will be achieved and make the system General
purpose System.

V. CONCLUSION
The Flexibility to Use the Desktop OS and RTOS

simultaneously for the flexibility and portability can be

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 2, April 2012

164

achieved by the implementation of Hybrid System. At the
same time the Power of Both the Os can be attained for the
Specific Applications, and we can build the application
custom so that more options are available to the User.

REFERENCES
[1] Z. A. Yu. Research of Real-Time Performance and Software

Reliability based on Embedded Industrial Control System with
Windows CE. Master’s dissertation of Northwest University, 2009.

[2] H. F. Han, Research of Key Problem about Real-Time Operating
System. Doctor’s Dissertation of Zhejiang University, 2009.

[3] Q. Li and C. Yao. Real-Time Concepts for Embedded Systems. CMP
Books, 2003.

[4] Tangyin. Real-Time Operating System Application development
Guide. China Electric Power Press, July 2002.

[5] Milan Milenkovic. OPERATING SYSTEMS: Concepts and Design.
(Second Edition), Tata McGraw-Hill Publishing Company Limited,
22nd Reprint 2007. Pp-403.

[6] S. Andrew, Tanenbaum, S. Albert and Woodhull. Operating Systems
Design and Implementation (Third Edition), Prentice Hall, January 04,
2006.

[7] L. I. Bing and L. I. Zhong-wen. Analysis of Linux Real-time
Mechanism. Computer Technology and Development, vol. 17(09),
Sep. 2007, pp. 41-44.

[8] B. J. Wang, M. S. Li and Z. G. Wang. Uniprocessor static priority
scheduling with limited priority levels. Journal of Software, vol.
17(03), March 2006, pp. 602-610.

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 2, April 2012

165

